GENETIC AND EPIGENETIC INSTABILITY IN CANCER

Genetic instability: Microsatellite instability & mu tator phenot ype

a remote control oncogenic pathway .

Epigenetic instability: DNA methylation alterations & ‘methylator ' phenotype

an ultraremote control oncogenic pathway ?

Relationships between epigenetic and genetic instab lities in ca ncer.

TENERIFE, OCTUBRE 2006
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Highlighted in red some of the genes
known to be functionally altered in cancer.
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The Hallmarks of Cancer

Douglas Hanahan* and Robert A. Weinberg?




MOLECULAR GENETICS OF CARCINOGENESIS
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THE GENETICS OF CANCER
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THE GENETICS OF CANCER
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GENETIC ALTERATIONS AND COLON CANCER

K-ras Other

Normal L Early & Intermed. & Late & &
epithelium adenoma adenoma Carcinoma

Fearon & Vogelstein. A Genetic model for colorectal tumori genesis. Cel |, 61, 759, 1990

But what was the cause of these oncogenic mutations?




Spontaneous Induced
mutations mutations

(REPAIR FAILURE)
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PROGRESS IN SCIENCE DEPENDS ON NEW TECHNIQUES, NEW
DISCOVERIES AND NEW IDEAS, PROBABLY IN THAT ORDER

Sidney Brenner, 1980.




DANCING NAKED
i the MIND FiGLD

WINNER OF THE WOBEL PRIZE IW CHEMISTRY

KaRY MULLIS

“Dedightful . . . joyous . .
extraordinary chemist”

. an autoblography of the nervous system of an
~THE NEW YORK TIMES BOOK REVIEW

FOUNDATIONS|

20n Noy

2 ape 10
Pl 1 AL
2

BTG TCATCATCCATICCATC TTCDACAIOG

il hebricire te noa—ceding DN strand prising relvserass maelificetion
of Foll frument of bimas merve feowth fartor satwrs pratels sevwence.

In condunction with O3

Bmelification bv resetitive ralrsecare/denatoration crcler will br attesrted
At wwriens levrls of mrkficatios furied attemet o eblain this sevence fros
commericel ] wvnilable bomar rlacents] DML

L!jn \Loa .--\-J.J.L'r '| 5 g»-—_,.,
__.PL\‘\' An _W | Same. ?kﬁﬂ_. g
1o b OdmA SN2
__.l“ ul 1ol EESN 1.
S ul epxh |
| ;bﬂ.u_ o DR\ 4.!‘.
4}&;&4-_34“»
ﬁ Buller Devye | |
'YPH’ES - Plpererwin 0 p'-hs

: ldﬂw {g"ﬁ

_b\im 1o uh

EAT: EM3

Nf\ m ?Eumt‘hﬂ"

i'.;q,.swa

AM‘?-: o s ,.-.H\
T BEA el T Ve X
.H\?{"FA

PIPEST buter

usa <+
~ Bullec TRlove  Jbs
| St G !
Bl I W, 1 S
CASs iy Piees

T e b bR Lk Mok

20 i HsCl

Courtesy of Kary B Mullis

February 24, 2003

ne First

hain Reaction

i his page from my notebook lists the chemicals

| which | put together into a single, purple-

capped tube on September 8th, 1983, in a reac-

tion | labeled PCRo1. No cycling, only one tube, no

variations, no controls, and anyone familiar with PCR

conditions used today will recognize very little here,
except the idea.

| wasn't positive that the reaction would not cycle
itself. | knew that any chemical equilibrium had
some finite value, meaning that some portion of any
nominally double-stranded DNA would be single-
stranded. And to increase the initial population of
single strands, | had to cut the template DNA with a
restriction enzyme. And the primers were there in
sumptuous abundance. | was certainly not a propo-
nent of doing things the hard way if there were any
other possibilities.

You might conclude that it was a long-shot experi-
ment. | agreed, so [at midnight] | poured myself a cold
Becks into a prechilled 500 ml beaker from the isotope
freezer for luck, and went home.

| ran a gel the next afternoon [and] stained it with
ethidium. It took several months to arrive at condi-
tions [that] would produce a convincing result.”

—Kary B. Mullis received the Nobel Prize in chemistry
in 1993 for his discovery of the PCR method.

The Scientist | 1
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PRINCIPLE OF DNA FINGERPRINTING
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© 1990 Oxford University Press Nucleic Acids Research, Vol. 18, No. 24 7213

Fingerprinting genomes using PCR with arbitrary primers*

John Welsh and Michael McClelland
California Institute of Biological Research, 11099 North Torrey Pines Road, La Jolla, CA 92037 USA

Deutscl




THE ARBITRARILY PRIMED PCR (AP -PCR)
John Welsh & Michael McClelland. Nucleic Acid Res. 18, 7213, 1990.

CYCLE 1: Low annealing temperature (about 45 °C) and thermostable polymerase.
The primer makes imperfect but sufficiently g ood match in many sites of genomic DNA.

Arbitrary primer

)
5 jﬁﬂ\ﬁﬁrﬂﬁl>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 3
5,

imperfect match genomic DNA

CYCLE 2: Heat to 95 °C then low annealing temperature (normally about 45 °C)
The primer makes imperfect but sufficiently good ma tches in a few products from CYCLE 1.

imperfect match
5’

|1
3 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<lmLJ—(J”m
Arbitrary primer

CYCLE 3: Heat to 95°C then high annealing temperature (about 65 °C).
Perfect matches for all successful priming event s from CYCLES 1 and 2.

Arbitrary primer ,
! SSSSSSS5SS5S5D3SSSSSSSSSSSSSS5SS5S5SSSS3SS35535555535>5>> 3

5’

perfect match
CONTINUE 30 CYCLES




CANCER PATHWAYS

SUPPRESSOR

guantitative
changes

( ANEUPLOID PHENOTYPE )

(N: NORMAL; T: TUMOR,; L: LOSSES; G: GAINS)




Genetic alterations in gastric cancer by AP-PCR fingerprinting

35.0
30.0 == === m i m e m e m oo oo
D30]I 5 S S T S e S S e e -1l

D T T ISR =N - |

15.0 b o mmmm e e e |- e -{

- -—:/"
—‘/- 1
10.0 - gl B 1711 MR
—--//-— M -
5.0 -
10.0 1 e 1
.\-\-- 1 i
l\




% of altered bands

Survival fraction

.87
.67

60

11 4

GDF & curative vs. non curative gastric cancer

Total (n=74)

P =0.0009

GDF: <0.22 (N=43)

Do@o cocom o

Tumors

Curative cases (n=46)

P =0.0009

>

GDF: <0.22 (N=27)

S@eo-eo-e82>-O

Non Curative (n=28)

P =0.0232

Follow-up (months)

2] | GDF: >0.22 (N=12)
21 1
. t GDF: >0.22 (N=19)
07 GDF: >0.22 (N=31) ] GDF: <0.22 (N=16)
0 40 80 120 160 40 80 120 160 40 80 120 160



AP-PCR & the discovery of microsatellite instability ( MSI)

guantitative qualitative
changes changes

ANEUPLOID PHENOTYPE MUTATOR PHENOTYPE

(N: NORMAL; T: TUMOR; L: LOSSES; G: GAINS;) D: DELETIONS




MSI & colon cancer of the microsatellite mutator phenotype

116 91* 83 60
N TNTNTNT

AP-PCR DNA FINGERPRINT

One or two bands in the fingerprints

from about 13% of unselected colon
tumors exhibited mobility shifts due to
mutations in microsatellite sequences.

The arbitrary nature of AP -PCR permitted
to estimate that the mutations in these

tumors surpassed hundreds of
thousands :

# of total base pairs
Number of  (bp) in the genome 3 X 10°
mutations = = -~10°
# of total bp in the ~3 X 104
AP-PCR fingerprints

lonov et al Nature 363, 558-561, 1993




THE MICROSATELLITE MUTATOR PATHWAY FOR COLON CANCER

NORMAL TUMOR
AGCT A GCT

Cloning and sequencing
revealed that the
mobility shifts were due
to somatic deletions of
a few nucleotides in
mononucleotide
microsatellite repeats
l.e. poly(A)n tracts.
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MICROSATELLITE INSTABILITY

N T N T N T

MSI is easily detectable by a simple PCR
reaction of a long mononucleotide repeat




Frameshift Mutations and the Genetic Code

This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday.

(GEORGE STREISINGER, YOsSHIMI OKADA, JoycE EMRIcH, JUDITH NEWTON
AxIrA Tsucrra!, Eric TERzAGHI*! AND M. INoOUYE!
Inastitute of Molecular Biology, University of Oregon, Eugene, and Institute of Molecular Genetics, University of Osaka, Japan'.

Cold Spring Harb. Sympos. Quant. Biol. vol 31, ’?7-8

Ficure 5. (a) Origin of a frameshift
mutation at the end of a molecule. Line
1 shows the normal end of a molecule,
line 2 shows an end in which one chain
has been digested by an exonuclease
followed by mispairing, and line 3 shows
the appearance of the molecule after
resynthesis of the digested chain.




STREISINGER'S SLIPPAGE BY STRAND MISALIGNMENT
FOR GENERATION OF MICROSATELLITE MUTATIONS
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Yurij lonov*, Migue! A, Pelnado™t,
Sergel Malkhosyan*, Darryl Shihatafﬁ;
Manuel Perucho$

* California Institute of Biological Research, 11093 North Torrey Pines
Road, La Jolla, California 92037, USA

t Department of Pathology, University of Southern California School of
Medicine, Los Angeles, California S0033, USA

SPONTANEOUS errors in DNA replication were proposed to be
substantial in transformation to explain the chromosomal alter-
ations of cancer cells'. A replication-defective factor could gener-
ate an enhanced error rate in the clonal variants arising during
tumour progression. But increased mutation rate in tumour cells
has not been demonstrated®. Using unbiased genomic fingerprint-
ing we show that somatic deletions in poly(dA -dT) and other simple
repeats occur in 12% of colorectal carcinomag in large numbers.
These mutations are clustered in fumours with distinctive genotypic
and phenotypic features and ubiquitous in neoplastic regions of
synchronous tumours from the same patient, including adenomas.
These microdeletions represent a discrete molecular pathway for
colon cancer involving a mutator mutation with an active role in
oncogenesis and that may have an inherited predisposition.




071 836 9934 NATURE EDITORIAL

Spontaneous errors in DNA replication have been suggested to explain the

chromosomal alterations seen in cancer cells'. Mutations in a replication

factor could increase the error rate in tumour cells, but despite intensive
efforts, no increase in the tumour cell mutation rates has ever been shown?.
Here we use an unbiased genomic fingerprinting technique to show that
12% of colorectal carcinomas carry somatic deletions in poly dA:dT
sequences and other simple repeats. We estimate that some tumours may
Only tumours with affected poly dA:dT
sequences carry mutations in the other simple repeats examined, and such
mutations can be found in all neoplastic regions of synchronous tumours
from the same patient, including adenomas. Tumours with these mutations
show distinctive genotypic and phenotypic features. Certain patients may
therefore have an inherited predisposition to produce an altered DNA
replication factor of reduced fidelity which plays an active role in colorectal

oncogenesis.




LETTERS TO NATURE

Ubiquitous somatic mutations in
simple repeated sequences
reveal a new mechanism for
colonic carcinogenesis

Yurij lonov*, Miguel A, Peinado™f,
Sergei Malkhosyan®, Darryl Shibatax
& Manuel Perucho™$

* California Institute of Biological Research, 11099 North Torrey Pines
Road, La Jolla, California 92037, USA

1 Department of Pathology, University of Southern California School of
Medicine, Los Angeles, California 80033, USA

1 Present address: Institut de Recerca Oncologica, Hospital Duran | Reynals, Autovia de Castelidefels,

Km 2.7 Hospitalet, 08907 Barcelona, Spain.
§ To whom correspondence should be addressed,

558

SPONTANEOUS errors in DNA replication have been suggested
to play a s:gmﬁcant role in neoplastic transformation and to
explain the chromosomal alterations seen in cancer cells'. A
defective replication factor could increase the mutation rate in
clonal variants arising during tumour progression, but despite
intensive efforts, increases in tumour cell mutation rates have not
been unambiguously shown”. Here we use an unbiased genomic
fingerprinting technique® to show that 12 per cent of colorectal
carcmumas carry somatic deletions in poly(dA - dT) sequences and

timate that cells from these tumours
can carry more than 100,000 such mutations.|Only tumours with
affected poly(dA -d1) sequences carry mutations in the other
simple repeats examined, and such mutations can be found in all
neoplastic regions of multiple tumours from the same patient,
including adenomas. Tumours with these mutations show distinctive
genotypic and phenotypic features. We conclude that these muta-
tions reflect a previously undescribed form of carcinogenesis in
the colon (predisposition to which may be inherited) mediated by
a mutation in a DNA replication factor resulting in reduced fidelity
for replication or repair (a ‘mutator mutation’).

NATURE - VOL 363 - 10 JUNE 1993




Tumor cells with hundreds of
thousands of somatic microsatellite
mutations had a much higher

mutation rate than normal cells. That
IS, they displayed a
mutator phenotype




A MUTATOR GENE

Structure of E. coli homodimer bound to DNA




MSI & cancer of the mutator phenotype pathway

Defects in the
DNA MMR
system underlie
a majority of
hereditary non
polyposis colon
cancers
(HNPCC),

AMERICAN
ASSOCIATION FOR THE
ADVANCEMENT OF
SCIENCE
23 DECEMBER 1994 $6.00
). VOL. 266 * PAGES 1917-2065
24
C
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DNA Repair

Molecule of the Year

and a minority of
sporadic colon
tumors and other
tumors from the
gastrointestinal
tract.




"FAMILY G" WARTHIN, 1913
: .

HNPCC (Lynch
syndrome)
represents the
most common
hereditary cancer
syndrome
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MICROSATELLITE INSTABILITY DISCLOSED THE EXISTENCE OF A
REMOTE CONTROL MECHANISM FOR CANCER DEVELOPMENT

r MUTATOR GENES

MUTATOR
sy MUTATIONS IN

PHENOTYPE CANCER GENES —> CHNEER




A MUTATOR GENE IS NOT

AN ONCOGENE

IT DOES NOT CONFER A NEOPLASTIC PHENOTYPE,
ONLY MAY CONFER A MUTATOR PHENOTYPE

A TUMOR SUPPRESSOR

IT DOES NOT SUPPRESS THE NEOPLASTIC PHENOTYPE,
ONLY SUPPRESSES GENOME DISINTEGRATION




Introduction: Discovery of microsatellite instability by AP-PCR fingerprinting.

epithelial cell migration
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24 hours)
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MOLECULAR GENETIC PATHWAYS FOR COLON CANCER

SUPPRESSOR MUTATOR

SPORADIC i ﬁ;l
TERRITORIAL

EXPANSION MICROSA-
AND/OR TELLITE

GROWTH INSTABILITY
ADVANTAGE

(APC)
MUTATOR
O (MLH1) O

WILD TYPE MUTANT

1 supPressor [ @

TUMOR
ANEUPLOID PSEUDODIPLOID
STABLE UNSTABLE

Perucho et al., CSHSQOB. 59, 339, 1994
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THE MOLECULAR GENETICS OF COLON CANCER

K-ras Other

Normal L Early & Intermed. & Late & &
epithelium adenoma adenoma Carcinoma

Fearon & Vogelstein. A Genetic model for colorectal tumori genesis. Cell , 61, 759, 1990




Tumors with microsatellite instability have fewer m utations
In the prototypical cancer genes for colon cancer

APC RAS P53

.-y e G

P=0.023 P=0.002 P=0.002

- P @ @

B no mutation mutation

On the other hand, they harbor a large number of ot  her mutated
cancer genes in the same oncogenic networks ( TGFBRII, Bax, etc)




BAX mutations in gastrointestinal cancer
of the microsatellite mutator phenotype pathway

(G)g
ATG GGG GGG GGA [ Colon (n= 48)
7aa B Gastric (n= 35)

80
1bp insertion
(G)g
ATG GGG GGG GAG

\/

[ N [T EN

BH3 BH1BH2TM

BAX
1bp deletion

=
BAX ICE

ATG GGG GGG AGG  Erameshifts (%)
(G),




In vivo selection for BAX mutational inactivation

MMP+ TUMOR CELL LINE

e

/ ISOLATE SINGLE

CELL CLONES

BAX
(G)8 WT

MICRO-
ISSECTION

Y. lonov, H. Yamamoto, S. Krajewski, J. Reed & M. Peru cho, PNAS 97: 10872 (2000)



In vivo selection for BAX mutational inactivation

MMP+ TUMOR CELL LINE

(Before)

BAX (+)
BAX (-)

/ ISOLATE SINGLE

CELL CLONES

BAX
(G)8 WT

MICRO-

I ISSECTION

Y. lonov, H. Yamamoto, S. Krajewski, J. Reed & M. Peru cho, PNAS 97: 10872 (2000)



In vivo selection for BAX mutational inactivation

MMP+ TUMOR CELL LINE

o

/ ISOLATE SINGLE \

CELL CLONES

BAX
(G)9 MUT
(G)7 MUT

BAX
(G)8 WT
(G)7 MUT,

l
/\/”@J ak..V

Y. lonov, H. Yamamoto, S. Krajewski, J. Reed & M. Peru cho, PNAS 97: 10872 (2000)




BAX MUTATIONS RELEASE THE PRESSURE FOR P53 MUTATIONS
IN GASTROINTESTINAL CANCER OF THE MMP

{ pre = ==
( DNA damage
{ Cell sensor _ -

Proliferation
(Cell Cycle)

Once the mutator phenotype

unfolds, mutations in hotspot
repeats within some cancer

genes (i.e. BAX) occur sooner
than in other cancer genes

» Mitochondria without these repeats (i.e. p53)

= g

(Apoptosis) ) «———— Caspase 8 <—— FADD
i

From Hanahan & Weinberg. Cell, 100, 57-70, 2000.




TUMORS WITHOUT TUMORS WITH
MUTATOR PHENOTYPE MUTATOR PHENOTYPE




MUTATED TARGET GENES IN COLON CANCER OF THE
MICROSATELLITE MUTATOR PHENOTYPE

Genes with coding repeats (7-10)

Woerner et al. Oncogene. 2003.




MSI & survival of 714 stage Il & Ill colorectal can cers

Tumors with MS|
are very different
in genotype &
phenotype
relative to tumors
without MSI

These
differences
include patient

P<0.0001 survival

_um S=urvival

M0 40 B0 &0

survival time (marth)




BIALLELIC AND MONOALLELIC MUTATIONS IN CANCER OF TH E MUTATOR PATHWAY

Non coding
NT NT NT NT

- -< (A)2s M Tumor cells of the microsatellite

mutator phenotype present
another paradox:

They accumulate many
biallelic mutations in neutral

Codlng (non coding) sequences,

but also many monoallelic
mutations in functional
(coding) sequences.

TGFBR”""W '-""....."" '—' -—‘<(A)10

v v

v v

NMSH?3 me— iy i—— --<(A)8

NIVISHE s — F—- '—H<(C)8




ACCUMULATIVE HAPLOINSUFFICIENCY MODEL FOR CANCER OF THE MMP]

TUMOR MMR DNA REPAIR APOPTOSIS CELL GROWTH l
L1 S2 S6 S3 S5/L3 MD1] R50 OTHE DNPK] p53 BAX CAS50THEH APC BCAT AXIN TCF4 KRAS TGFR IGFR RIZ
s F |

7
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DOMINANT MUTATION
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S EEEFEEEEEEEEEEEEE|[“

AMINO ACID DELETION

SPLICING MUTATION

METHYLATION +/- LOH

NEGATIVE FOR METHYLATION

MLH3
BRCAL
HELICASE
Il cRccs
BRCA2
Il soom
ATR
Il s

| o EINED
BCL10




Tumors Without mutator phenotype
Tumor 1

T||||| T||||| T||||| HIII
BCD BCD @BCD CD

Few mutated cancer genes: i.e., APC (A), B-catenin (B).
High mutation incidence of individual cancer genes

under strong selection during tumorigenesis (i.e., APC).

Biallelic mutations. sepolpe
oo oo B: B-oatenln
. C: Axin
Tumors Wlth mutator phenotype D- TCF-4
Tumor 1 E: etc.

¢||||| HHH tHH .
BCD AB A'@@ (aXBXcXD)

Several mutated cancer genes of the same network.
Low mutation incidence of each individual gene
l.e., APC (A), Axin (B), TCF-4 (C), etc.
Biallelic and monoallelic mutations.




MODEL OF ACCUMULATIVE HAPLOINSUFICIENCY FOR COLON CANCER
OF THE MICROATELLITE MUTATOR PHENOTYPE

SUPPRESOR PATHWAY MUTATOR PATHWAY

NORMAL
CELL

MUTATIONS

BIALLELIC MUTATIONS IN MONOALLELIC MUTATIONS
ONLY ONE CRITICAL GENE IN MULTIPLE GENES




THE MICROSATELLITE MUTATOR PHENOTYPE
PATHWAY FOR COLON CANCER

ALTERNATIVE MUTATIONAL PATHWAYS

SUPRESSOR MUTATOR
PATHWAY PATHWAY

INTESTINAL CRYPT STEM CELL
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ALTERNATIVE GENETIC PATHWAYS FOR COLON CANCER
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Mutator phenotype (MSI) is dominant over
DNA hypermethylation in colorectal cancer
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DNA METHYLATION ALTERATIONS IN COLON CANCER DETECTE D BY MS-AFLP
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Yamashita et al. Cancer Cell
4, 121-131, 2003.




Detection of hypomethylation alterations by MS-AFLP
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Distribution of methylation alterations in gastric & colon cancers

GASTRIC CANCER COLON CANCER

MS-AFLP bands MS-AFLP bands
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No evidence for bimodal distribution of somatic
or hypomethylation alterations in colon and gastric cancer




CANCER PATHWAYS

SUPPRESSOR

guantitative
changes

( ANEUPLOID PHENOTYPE )

(N: NORMAL; T: TUMOR,; L: LOSSES; G: GAINS)




Genomic Damage Fraction (GDF) & gastric cancer survival
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Methylation alterations and survival in colon cance
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Survival according to methylation status of some of the most
frequently altered MSAFLP bands.
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THE ALTERATIONS IN CPG ISLAND METHYLATION ARE NOT D UE
TO AMETHYLATOR OR DEMETHYLATOR PHENOTYPE.

THEN, WHY ARE THEY OCURRING?
(BECAUSE NOTHING HAPPENS WITHOUT A CAUSE ...)




